Leading scientists lined up for new online seminar series »click here»

Research Projects for COVID-19

The Baruch S. Blumberg Institute remains committed to hepatitis B and liver cancer translational research, and those affected by these should know our commitment and work effort continues as passionately as ever. However, everyone has also been affected by the COVID-19 crisis, and some of the work that has been ongoing at the Baruch S. Blumberg Institute can help with the pursuit and understanding of COVID-19 management.  

Goals of the Covid-19 Blumberg Action Fund:

  • Support the Blumberg Institute’s efforts to repurpose existing drugs and methods for the treatment and control of COVID-19.
  • Provide resources to translate these discoveries in the shortest amount of time.

Your support will enable our scientists to advance their discoveries as quickly as possible.

 

DONATE TO THE Covid-19 BLUMBERG ACTION FUND NOW

 

Below are the projects being worked on at the Blumberg Institute:

picture for BSBI writeup

Image from the lab of John Kulp, Ph.D.


Therapeutics to manage and understand SARS-CoV 2 virus and Covid 19.

Iminovirs The Labs of Jinhong Chang, M.D., Ph.D. and Yanming Du, Ph.D.

We now have evidence that a family of drugs we discovered, iminosugar ER glucosidase inhibitors, significantly reduces the replication of SARS-CoV (the cause of SARS) in vitro in cultured cells, at concentrations where no cytotoxicity is observed. ER glucosidase inhibitors involve two distinct targets against coronaviruses. The mechanism of action of our imino sugars against SARS-CoV leads us to believe the drug will be active against SARS-CoV-2, the viral cause of COVID-19. 

Our drug hits the SARS-CoV at two of steps in its life cycle which are essential, and both are also used by SARS-CoV-2. Our drug inhibits the viral spike (S) glycoprotein folding which depends upon ER glucosidase I & II. SARS CoV and SARS CoV-2 Spike proteins both have more than 20 N-glycosylation sites. Our drug also inhibits the viral “receptor”, which is N-glycosylated, so that entry of the virus to cells is reduced.

The labs of Dr. Jinhong Chang and Dr. Yanming Du wish to determine if these iminosugars will be active against SARS-COV-2, and study the mechanism-based feasibility of further developing into COVID-19 therapeutic candidates.

  

Discovery of direct-acting antivirals that target SARS-Cov-2 The Lab of John Kulp, Ph.D.

SARS-Cov-2 depends on a virus specific proteins. Two of them are the main protease (NSP5) and the SPIKE protein (S). Multiple crystal structures of the NSP5 and S have determined and reported. The laboratory of John Kulp, Ph.D. has computer-assisted models to screen our compound library (and other libraries) for small molecules that bind these vital viral proteins.  Once candidate compounds have been identified by this virtual screen, he wishes to test them for authentic activity against SARS-Cov-2.

 

Minibodies to block SARS Cov-2 The Lab of Yizeng Yang, M.D., Ph.D.

The lab of Yizeng Yang, M.D., Ph.D., is synthesizing mini-antibody mimetics intended to prevent SARS-CoV 2 from binding to and attacking target cells. These would serve as artificial “antibodies.” Dr. Yang can produce these mimetics in the lab but wishes to have hem tested for their ability to actually block authentic virus.

 

Harnessing innate immunity control for prevention and treatment of SARS-CoV-2 infection The Lab of Ju-Tao Guo, M.D  

The Laboratory of Ju-Tao Guo, M.D., recently reported their discovery that a cellular protein, LY6E, can be induced by interferons and render cells resistant to the infection of all the known human coronaviruses, including the currently pandemic SARS CoV-2 (bioRxiv preprint). Further understanding its expression and mechanism to block the entry of viruses into their target cells as well as its interaction with other cellular restriction factors will facilitate the efforts to discover therapeutics that harness these host cellular defense proteins for the prevention and treatment of COVID-19 and potential future coronavirus epidemics.

 

For more information about how to support these efforts, or explore other giving tools, contact us today:

Jean Holmes

Vice President, Institutional Advancement

805-279-1216

Jean.Holmes@hepb.org