Applications of Non-Covalent Sulfur Interactions in Drug Design

Nicholas A. Meanwell

Baruch S. Blumberg Institute School of Pharmacy, U. Michigan NuArq MedChem Consulting LLC

Baruch S. Blumberg Institute

Tuesday, June 20th, 2023

Outline

- Sulfur in natural products and drugs
- $\bullet \sigma$ -Holes on sulfur
 - background, theory and occurrence
 - comparison with σ -holes on halogens
 - stereoelectronic implications for conformational control
- Applications of O to S interactions in drug design and synthesis
 - 1,4 O to S
 - 1,5 O to S
 - 1,6 O to S
- Applications of N to S interactions
 - 1,4 N to S
 - 1,5 N to S
 - 1,6 N to S
- Halogen to S interactions
 - F to S
 - CI to S
- Intermolecular O to S interactions
 - emerging examples
- Conclusion

S can effectively mimic an OH or NH with the advantage of a reduced desolvation penalty – more lipophilic

S can effectively mimic a CI, Br or I Similarly lipophilic

Y. Nagao, Heterocycles, 2013, 87, 1-29; N.A. Meanwell et al., J. Med. Chem., 2015, 58, 4383-4438

Sulfur in Natural Products

- Sulfur is an important element in multiple natural products
 - prevalent in approved drugs
 - not always electron-deficient

Thiophenes & Factor Xa Inhibition

Y.M. Choi-Siedeski *et al., J. Med. Chem.*, 2003, **46**, 681-684; S. Roehrig *et al., J. Med. Chem.*, 2005, **48**, 5900-5908 J. Shen *et al.*, *Acta Cryst.*, 2018, **E74**, 51-54; Y. Imai *et al.*, *Protein Sci.*, 2008, **17**, 1129-1137

Sulfur-Containing Heterocycles Have Unique Attributes

N.A. Meanwell et al., J. Med. Chem., 2015, **58**, 4383-4438; N.A. Meanwell, Adv. Het. Chem., 2017, **123**, 245-361 J.S. Murray et al., Int. J. Quantum Chem., 2008, **108**, 2770-2781; T. Lu et al., J. Chem. Inf. Model. 2015, **55**, 2138–2153

σ Holes – Halogens & S Atoms

J.S. Murray *et al., Int. J. Quantum Chem.,* 2008, **108**, 2770-2781; N.A. Meanwell *et al., J. Med. Chem.,* 2015, **58**, 4383-4438 X. Wang *et al., Angew. Chem. Int. Ed.,* 2013, **52**, 12860-12864; T. Bootwicha *et al., Angew. Chem. Int. Ed.,* 2013, **52**, 12856-12859

σ Holes & O/S Bonding Interactions

- H-bond strength is typically 5.25-7.20 kcal/mol
 - H_2O dimer = 5.7 kcal/mol
 - $H_2O-NH_3 = 7.20$ kcal/mol
- Thiophene-NMA

- C-S = -5.20 kcal/mol; 3.24 Å

- Thiazole-NMA
 - C-C-S = -5.40 kcal/mol; 3.05 Å
 - N-C-S = -5.47 kcal/mol; 3.19 Å
- Thiadiazole-NMA
 - N-C-S = -6.43 kcal/mol; 3.02 Å

NMA-NMA

- H-bond = -9.08 kcal/mol

O-S interactions ~60-70% of energy of a H-bond

Sulfur Interactions and Conformation

Sulfur Bond Acceptors & Bioisosteric Relationships

S = OH

O to S Interactions

1,4 O to S Interactions

Nucleosides: Tiazofurin, Adenosine Deaminase Substrates

- Ribavirin is an IMPDH inhibitor after metabolism to NAD analogue
 - tiazofurin expresses similar biological activity
- \blacklozenge X-rays of tiazofurin, 2-deoxy and the $\alpha\text{-anomer}$ all reveal close O/S contacts
 - O-S distances of 2.83-3.02 Å
 - interaction enhanced by the $\ensuremath{\mathsf{CONH}}_2$ electron with drawal
- Selenazafurin also active: O to Se interaction stabilizes active conformation
 - oxazofurin, imidazofurin not active
- Observations explained by conformational arguments
 - favorable O to S stabilizes conformation recognized by enzymes
 - C-H to O in ribavirin

thA designed as adenosine deaminase (ADA) substrate

^{- th}A emits at 410 nm while thI emits at 391 nm

- Single crystal X-rays revealed close O to S contacts
 - stabilizes conformation preferred by adenosine
 - recognized by deaminase

ΣO+S: 3.32 Å

B.M. Goldstein *et al., JACS,* 1983, **105**, 7416-7422; *J. Med. Chem.*, 1988, **31**, 1026-1031; *Advan. Enzyme Regul.*, 2000, **40**, 405-426 Y. Tor *et al., J. Am. Chem. Soc.,* 2011, **133**, 14912-14915; *Angew. Chem. Int. Ed.*, 2013, **52**, 14026-14030

Optimization of Alk Inhibition by Crizotinib

- effects in non-small cell lung cancer mediated by Alk

- Optimization of potency towards Alk focused on the pyrazole moiety
 - enhance WT & resistant mutant L1196M Alk potency; engage Asp₁₂₀₃ via H-bonds
- Mono OH & diols made to establish H-bond network with kinase
 - close contact between O & S stabilizes planar topography
 - dipole-dipole interactions may play a role in topology
- Alcohol engages Asp₁₂₀₃; diol establishes 2 H-bonds
 - alcohol: $K_i = 0.4 \text{ nM}$; cell EC₅₀ = 27 nM
 - diol: $K_i = 0.2 \text{ nM}$; cell EC₅₀ = 6.6 nM

Alk = anaplastic lymphoma kinase

Impact Conformational preorganization for molecular recognition H-bond assistance

Origin 1,4- O/S & dipole-dipole effects

ΣO+S: 3.32 Å

Q. Huang et al., J. Med. Chem., 2014, 57, 1170-1187

Dipole & O/S Interactions in C3a Ligands

- Complement C3a: a pro-inflammatory 77 AA helical protein that binds to GPCR C3aR
 - stimulates chemotaxis of immune cells to sites of infection
 - intracellular Ca²⁺ mobilization releases bactericidal agent & inflammatory cytokines
- Imidazole is a potent agonist
 - partially mimicked by a C3-thiazole homologue
 - isomeric C5-thiazole is an antagonist: S and N switched topologically
- Rationalized by topological preferences
 - C=O & ring dipoles align to minimize electrostatic repulsion:
 - controls C=O geometry
 - dipole interactions reversed in topologically isomeric thiazole
 - also stabilized by 1,4-O to S interaction
- Activity-topology relationship confirmed with locked analogues
 - activity of fused ring isosteres consistent with hypothesis

Origin 1,4- O/S interaction Dipole-dipole effects Intramolecular H-bond

1,4 C=O to S in FXa Inhibitors & NPY5 Antagonists

- Potency of FXa inhibitors sensitive to piperidine amine topology
 - amide/thiazole conformation stabilized by O to S/unfavorable O to N
 - amide/thiophene modulated by favorable O to S
- N-Me alignment important to avoid steric clash with enzyme
 - lower penalty for thiophene to adopt alternate conformation

- Potent thiazole-based mouse NPY5 antagonist
 - optimized by extending 2-substituent
- ◆ Isomeric thiazole ≥10-fold weaker
 - attributed to inherent conformational preferences
- Active compounds stabilized by favorable O to S & dipole/dipole effects
 - alternate thiazole adopts different conformation
 - reduces unfavorable O to N and dipole-dipole interactions

Impact Conformational preorganization for molecular recognition Origin 1,4- O/S interaction Dipole-dipole effects

S. Komoriya *et al., J. Med. Chem.*, 2004, **47**, 5167-5182; *Bioorg. Med. Chem.*, 2006, **14**, 1309-1330; 2009, **17**, 1193-1206 W. Guba, M. Nettekoven *et al., Bioorg. Med. Chem. Lett.* 2005, **15**, 1599-1603; 3446-3449; *ChemMedChem* 2006, **1**, 45-48

S Interactions in GK-GKRP Disruptors

ΣO+S: 3.32 Å

K.S. Ashton et al., J. Med. Chem., 2014, 57, 309-324; N.A. Tamayo et al., J. Med. Chem., 2015, 58, 4462-4482

Cdk Inhibitors: H-Bonding Dominates

- Amide C=O/NH intra-molecular H-bond forms a pseudo ring
 - C=O interacts with proximal NH
 - projects NO₂-Ph ring toward Lys₃₃
- Electron-donating substituents reduce electrostatic potential of C-Sσ*
 - productive O-S interaction would create allylic-1,3-strain
- Ketone-based series adopted similar topology
 - SO_2NH_2 engaged in 3 H-bonding interactions
 - significantly (600x) improved potency

Impact Conformational preorganization for molecular recognition Origin Intramolecular H-bond Reduced So* effect due to substation pattern

1,5 O to S Interactions

O to S in CHK1 & VEGFR Inhibitors

ΣO+S: 3.32 Å

B. Yang et al., J. Med. Chem., 2018, 61, 1061-1073; see L. Zhao et al., Bioorg. Med. Chem. Lett., 2010, 20, 7216-7221 for a closely related series T. Honda et al., Bioorg. Med. Chem. Lett., 2008, 18, 2939-2943; 2010, 20, 7234-7238; 2011, 21, 1232-1235

1.5- O to S

1,5-O to S in Glucokinase Activators & Aurora Kinase Inhibitors

ΣO + S: 3.32 Å

N.E. Haynes et al., J. Med. Chem., 2010, **53**, 3618-3625; Z.S. Cheruvallath et al., Bioorg. Med. Chem. Lett., 2013, **23**, 2166-2171 T. Nishimura et al., Bioorg. Med. Chem. Lett., 2009, **19**, 1357-1360; 2009, **19**, 2718-2712; J.D. Oslob et al., Bioorg. Med. Chem. Lett., 2008, **18**, 4880-4884

1,5 O to S in Organic Synthesis

- Isothiourea-catalyzed reactions of enolates
- THTP a superior catalyst to DBN
 - ascribed to transition state stabilization by THTP
- Fusing aryl ring afforded more active catalysts due to π - π interactions in TS
 - tetramisole to benzotetramisole
- Process rendered asymmetric by introducing chirality to amidine ring
- O to S in TS thought to pre-organize enolate
 - allows pendent Ph to direct asymmetric alkylation

1,6 O to S Interactions

1,6 O to S in All and JNK Kinase

- 1,6 O to S interactions not well documented
- O to S in LR-B/081 measured as 3.20 Å in single crystal X-ray
 - just less than the 3.32 Å sum of vdW radii
 - close association between S and tetrazole N: 3.30 Å (3.35 Å is vdW sum)
 - ester O close to C-5 H: vdW radii sum = 2.72 Å
- IKK β inhibitor (IC₅₀ = 45 nM) in complex with JNK3 kinase
 - close 1,6-O to S contact of 2.8 Å observed
- Alternate heterocycles gave 3-4-fold lower potency
 - may play a role in modulating conformation
- PDE5 inhibitors originated from thiophene-based lead
 - thiazole designed to engage in H-bonding interaction with enzyme

ΣO+S: 3.32 Å

A. Salimbeni *et al., J. Med. Chem.,* 1995, **38**, 4806-4820; R. Destor *et al., Acta Crystallogr. Sect. C,* 1995, **51**, 1383-1385; *Chem. Eur. J.* 2005, **11**, 4621-4634; 2007, **13**, 6942-6956 H. Sugiyama *et al., Chem. Pharm. Bull.,* 2007, **55**, 613-624; H.B. Luo *et al., J. Med. Chem.,* 2017, *60*, 6622-6637; 2018, **61**, 8468-8473

Impact Conformational preorganization for molecular recognition

> Origin 1,6- O/S interaction

N to S Interactions

1,4 N to S Interactions

1,4 N to S in p38α MAP Kinase Inhibitors

Dabrafenib: B-Raf V600E kinase inhibitor

 N to S stabilizes planar conformation

 N to S stabilizes conformation of simeprevir

 observed in cocrystal with HCV NS3

S. Lin et al., Bioorg. Med. Chem. Lett., 2010, 20, 5864-5868; J. Hynes et al., Bioorg. Med. Chem. Lett., 2008, 18, 1762-1767; T.R. Rheault, et al., ACS Med. Chem. Lett., 2013, 4, 358-362; T. Haack et al., Bioorg. Med. Chem., 2005, 13, 4425-4433; M.D. Cummings et al., Angew. Chem. Int. Ed., 2010, 49, 1652-1655

Intramolecular 1,4-N/S Reduces Potency

- Non-steroidal farnesoid X receptor (FXR) modulators
 - potential therapy for NASH & other liver diseases
- Thienyl derivative a modestly potent lead
 - phenyl homologue 14-fold more potent
- Modeling suggested H-bond interaction with protein
 - OH of Tyr₃₇₃ donates to imidazole N
 - intramolecular N/S interaction proposed to abrogate
- Pyridyl homologue highly potent: EC₅₀ = 300 pM
 - intramolecular H-bond stabilizes planar, bound conformation

1,4- N/S

1,5 N to S Interactions

N to S & O to S in *M.tb* InhA Inhibitors

- Inhibitors of *M.tb* enoyl-acyl carrier protein reductase (InhA)
- X-ray cocrystal shows close pyrazole N to thiadiazole S

 favors coplanar topography
- Thiadiazole N & NH engage NH and C=O of Met₉₈
 - project diF-Ph into hydrophobic pocket
- Close contacts between hydroxy O & thiazole S atoms
 - 2.86 Å with ϕ = 23°, 3.03 Å
 - topography reflects favorable dipole alignments
- Inhibition maintained by heterocycles that allow N to S interaction
 - isomeric pyrazole 59-fold weaker
- Amide analogue 50-fold less potent
 - close O to S (2.90 Å, ϕ = 5.2°) organizes thiadiazole amide appropriately
 - amide projects diF-Ph poorly for interaction with InhA

Impact Conformational preorganization for molecular recognition

Origin 1,5- N/S interaction 1,4-O/S interactions Dipole-dipole alignment

ΣN + S: 3.35 Å

N to S in Glucokinase-Glucokinase Regulatory Protein Disruptors

◆ Inhibitors of glucokinase-glucokinase regulatory protein binding interaction

- GKRP regulates cellular location of GK
- Lead identified by HTS
 - modest potency, binds to an allosteric site on GKRP
 - benzothiophene more potent: $IC_{50} = 0.017 \ \mu M$
- X-ray cocrystal suggested adding an ortho phenyl ring to the benzothiophene
 - establish contact with Arg₅₂₅ via OH but would require coplanar topography
- Exploited an N to S interaction to favor planar conformation
 - confirmed by X-ray cocrystal of optimized compound: 2.64 Å (Σ vdW = 3.35 Å)
- Note: SO₂ moiety projects away from thienyl S atom

Proactive use of N-S to control conformation

KDR & Chk1 Inhibitors

N to S in GSK and JAK2 Inhibitors

Halogen to S Interactions

Intramolecular CI/S & CI/F Interactions

A.A. Hoser et al., Cryst. Growth Des., 2018, 18, 3851-3862; C.B. Nielsen et al., J. Org. Chem., 2015, 80, 5045-5048; M. Barlóg et al., Org. Chem. Front., 2019, 6, 780-790

Pyridazine, Thiadiazole & Intramolecular Interactions

NuArq MedChem Consulting LLC

A.T. Cheung et al., J. Med. Chem., 2018, 61, 11021-11036; J. Axford et al., J. Med. Chem., 2021, 64, 4744-4761

Intermolecular O to S Interactions

JOLIRNAL OF J. Chem. Inf. Model., 2015, 55, 2138-2153	Artide pubs.acs.org/jcim		J. Chem. Inf. Model., 2016, 56, 2298-2309 Perspective pubsacs.org/jcim
Intermolecular Sulfur…Oxygen Interactions: Theoretical and Statistical Investigations Xuejin Zhang, [†] Zhen Gong, [‡] Jian Li, ^{*,‡} and Tao Lu ^{*,†}		S···O and S···N Sulfur Bonding Interactions in Protein–Ligand Complexes: Empirical Considerations and Scoring Function Mathew R. Koebel, [†] Aaron Cooper, [†] Grant Schmadeke, [‡] Soyoung Jeon, [§] Mahesh Narayan, ^{*,II} and Suman Sirimulla ^{*,†,‡}	

Intermolecular O/S in Tankyrase & p21 Kinase Inhibitors

ΣO+S: 3.32 Å

Z. Hua et al., J. Med. Chem., 2013, 56, 10003-10015; B.W. Murray et al., PNAS, 2010, 107, 9446-9451

Intermolecular O/S in CHK1 Kinase Inhibitors

- Lead CHK1 kinase inhibitor: IC₅₀ = 75 nM
 - affinity selection MS-based automated ligand identification system screen (ALIS)
- X-Ray cocrystal structure highlighted key interactions
 - weak H-bonds to hinge backbone
 - benzofuran C-H to Cys₈₇ O
 - thiazole C-H to Glu_{85} O
 - Glu₅₅ C=O close to S of thiazole: slightly less than vdW radii
- Isoindolinone: $IC_{50} = 1 \text{ nM}$
 - H-bonds with isoindolinone C=O & pyridine N increase potency
 - close O/S interaction stabilizes bound conformation: 3.0 Å distance

Ph-Cl & Benzothiazole Bioisosterism in FKBP Proteins

FK506-Binding Protein 51

- CI-O distance is 3.10 Å

- 2nd CI not projecting toward Asp₆₈
- For benzothiazole, 2 rotamers are observed in the cocrystal structure
 - in 1 rotamer, S engages with Ser₁₁₈: O-S = 2.73 Å
 - in 2nd rotamer, S reaches out to Asp₆₈: O-S = 3.9 Å
- An interesting example of chlorophenyl/benzisothiazole bioisosterism

IDO Inhibitors

- catalyzes the first step in the kynurenine pathway
 - degradation of Trp
- IDO1 overexpressed in tumor cells
 - therapeutic target for combination with IO therapy
- HTS screening lead wit modest potency
 - optimization enhanced potency by 75x
- X-ray cocrystal structure revealed N coordination to heme Fe atom
 - close interaction between S and Ser₁₆₇ O atom: 2.87 Å; ∠ C-S-O = 172°
 - heterocyclic core $\pi\text{-stacking}$ with Phe_{163}
 - halogen bond between Cys₁₂₉ S & Br: 3.2 Å; ∠ C-S-Br = 162°

- Thiourea of most potent derivative
 - interaction between S & Ser₁₆₇ O atom maintained: - d = 2.78 Å
 - C=S engaged with Phe₁₆₃ & Phe₂₂₆:
 d = 5.2 Å & 5.3 Å (<6 Å productive)

Conclusion

Conclusion

 \Box σ -Holes on sulfur offer opportunity for interaction with electron donors

- O (OH, ether, C=O) and N (heterocycle) most common donors
- analogous to halogen bonding
 - intramolecular interaction favored by geometry of σ^* bonds
- Frequently contribute to drug design
 - not always appreciated
 - examples of a priori application emerging
 - stabilizes active conformations
- Can exert a profound effect on SAR
 - incorrect deployment can lead to reduced potency
 - can favor inactive conformation
- Intermolecular interactions beginning to be document
 - restricted to date to O to S: only histidine available for N to S

Acknowledgments

Brett R. Beno

Kap-Sun Yeung

Michael D. Bartberger (Amgen)

Lewis D. Pennington (Amgen)

