The Role of the Pyridazine Ring in Molecular Recognition & Drug Discovery

Nicholas A. Meanwell

Baruch S. Blumberg Institute Department of Medicinal Chemistry, School of Pharmacy, University of Michigan

NuArq MedChem Consulting LLC

Baruch S. Blumberg Institute

Monday, November 6th, 2023

Pyridazines in Drug Design - Outline

- candidates in development
- Physicochemical properties of pyridazines
 - lipophilicity
 - dipole interactions
 - electron withdrawing properties
- Conformational aspects of pyridazines
 - pyridazine-3-ethers
 - pyridazine-3-CH₂-OR
 - sulfur interactions
- Pyridazines & potency
 - increases, decreases
- Pyridazines & H-bonding
 - drug-target interactions
 - CO_2^- mimicry?
- Pyridazines & electrophilicity
 - activation of C≡N, acidification of NH
- Bioisosteres of pyridazines
 - fluorobenzenes, fused heterocycles
- Pyridazines & liability issues
 - can mitigate hERG, aniline problems
- Pyridazine-3-CO.NHR derivatives
 - interplay of substituent & ring
- Pyridazine-3-ones
 - molecular glues
- Conclusion

Heterocycles in Drug Design

- Heterocycles are the mainstay of medicinal chemistry
 - ubiquitous as drug scaffolds, structural elements, appendages and pharmacophores
- Heterocycles play a prominent role in the design of molecular metaphors (bioisosteres)

- e.g. azoles as amide isosteres; tetrazoles as acid isosteres

- ◆ Almost infinite opportunity for structural variation highly plastic in nature
 - electronic and steric effects of substituents add to the rich panoply of properties
- Properties of heterocycles:
 - can be basic or acidic: may depend on substitution pattern
 - unique vectors for deploying critical drug functionality
 - tautomeric nature provides additional opportunities for structural variation
 - heterocycle properties can be modulated by substituents
 - properties of substituents can be modulated by the heterocycle
 - H-bond donor: N-H, O-H, C-H
 - H-bond acceptor: predominantly N atoms, but O also can engage H-bond donors
 - engage in π - π (dipole) interactions with amides, aromatic rings
 - non-bonded interactions via σ^* effects in S-containing heterocycles
 - tautomerism adds to the diversity of effects
- The pyridazine ring has unique physicochemical properties of value in the design of bioactive compounds
 - extends to diazoles

Pyridazines in Marketed Drugs & Drugs in Development

Marketed or Advanced Pyridazine-Containing Drugs

N.A. Meanwell, Med. Chem. Res., 2023, 32, 1853-1921; Adv. Het. Chem., 2017, 123, 245-361

Pyridazine-Containing Drugs & Candidates in Development

Physicochemical Properties of Heterocycles

Where Pyridazines Appear in The Landscape

Physicochemical Properties

	N - N	N-N	N:N	/≈ N HN ∵ N	0 ∨ N - N	S↓ N N			N		N N N N	
р <i>К</i> _а	2.0	3.17	2.5-2.7	2.45				р <i>К</i> _а	5.2	0.93	-1.7	0.37
р <i>К_{внх}</i>	1.65	1.97	~1.65	2.6	1.3	~2.51		р <i>К_{внх}</i>	1.86	1.07	0.32	0.92
Dipole (D)	4.22	4.88	4.41	5.74	3.04	3.28		Dipole (D)	2.22	2.33	0	0
cLog P	-0.51	0.68	1.14	-0.89	-0.69	-0.2		cLog P	0.84	0.26	-0.73	-0.002
cLog D _{pH = 1}	-2.5	-1.51	-0.58	-2.85	-0.69	-0.22		$cLog D_{pH=1}$	-1.66	-0.58	-1.82	-0.43
TPSA (Ų)	25.8	25.8	25.8	36.75	33.95	54		TPSA (Ų)	12.9	25.8	38.7	25.8
C _X ^{Ph}	0.417							C _X ^{Ph}	0.41 (C2 & C4)	0.43 (C2); 0.5 (C4)		0.47
 Pyridazine is a strong H-bond acceptor approaching that of pyridine but much less basic not associated with CYP inhibition de-symmetrized by substitution Pyridazine has the largest dipole amongst azines 												
 reflected higher Pyridazine C compa affects 3-C-H is a H stronged 	ed in polar -1.35 unit TPSA thai -3 is elect trable to py properties -bond don er than pyr	ity (cLog P &	& cLog <i>D</i>) line t than pyrimid ents	ine $\mu = $ stronge in the az	N N 3.9 D est dipole st ine series	pK _{BHX} = 1.65 pK _a = 2.0 rong H-bond accepto weak base poor CYP inhibitor))))	N N 2.6 pK _{BHX} d	N-N-H-2.90 N-H-2.23 strongest C-H H-bond onor in the azine series	$\mu = 3.19 \text{ D (calcd)}$ $\mu = 3.26 \text{ D (calcd)}$	$\mu = 5.7-5.8 D$ $\mu = 2.72$	(calcd) $\mu = 4.38$ (calcd) $\mu = 4.38$ (calcd) $\mu = 0.22$

Physical Properties & Lipophilicity

Pyridazine - strong H-bond acceptor
 less basic than pyridine

- more basic than pyrazine

The largest dipole moment in the azine series
 - can be modulated by substituents

Limited impact of benzo-fusion on H-bonding

- reduction in pK_{a} is more typical

- pK_{a} for phthalazine & cinnoline increased

Heterocycles & Dipole Interactions

- Calculated energies & heterocycle dipoles

 good correlation with amide association
 some circumstances where this is not evident
 - some circumstances where this is not evide
- For heterocycles with no dipole moment
 - interaction E equates with ring electron density
 - stronger for electron deficient rings
- π - π interaction important in HRV capsid inhibitors
 - pyridazine ring to Tyr (& Phe in 1 polio variant)
 - H-bond to protein *via* H₂O may contribute

L.M. Salonen *et al., Chem. Eur. J.*, 2012, **18**, 213-222; M. Harder *et al., ChemMedChem*, 2013, **8**, 397-404; M.S. Chapman *et al., J. Mol. Biol.*, 1991, **217**, 455-463 For anticorrelation of dipole effects see: M.L. Waters *et al., J. Am. Chem. Soc.*, 2020, **142**, 17048-17056; *Protein Sci.*, 2023, **32**, e4533

Pyridazines & Dipole Interactions

D. Stroebel et al., Molec. Pharmacol., 2016, 89, 541-551; E.N. Chin et al., Science, 2020, 369, 993-999

Electron Withdrawing Properties of Heterocycles

G.A. Pagani et al., J. Org. Chem., 1998, 63, 436-444; 1996, 61, 1761-1769; 2002, 67, 5753-5772; N.A. Meanwell, Adv. Het. Chem., 2017, 123, 245-361

Conformational Aspects of Pyridazines

Conformation: Pyridazine-OR

- Heteroaryl ether topology depends on non-bonded interactions
 - observed in single crystal X-ray structures
 - provides a measure of control over exit vectors
- Catalysts for Sharpless asymmetric dihydroxylation of olefins
- Phthalazine moiety an essential scaffold for projecting alkaloid element
 creates enzyme-like binding pocket to orient olefin
- Conformation depends on N, O lone pair-lone pair repulsion
 confirmed by X-ray crystallography of the pyridazine analogue

R.J Chien & E.J. Corey, *Org Lett.* 2010, **12**, 132-135; M. Stahl *et al.*, *J. Chem. Inf. Model.*, 2008, **48**, 1-24 K.B. Sharpless *et al.*, *Chem. Rev.*, 1994, **94**, 2483-2547; E.J. Corey *et al.*, *Tet. Lett.*, 1994, **35**, 2861-2864

Conformation: Pyridazine-CH₂OH

F. Abraham et al., Acta Crystallogr., Sect. C: Crystal Structure Commun., 1988, 44, 1267-1269; F.Z. Hu et al., Acta Crystallogr., Sect. E: Structure Reports Online, 2006, 62, o3676-o3677 M. Stahl et al., J. Chem. Inf. Model., 2008, 48, 1-24; http://infochim.u-strasbg.fr/CS3/program/material/Stahl.pdf; H. Huang et al., ACS Med. Chem. Lett., 2012, 3, 1059-1064

Displacing H₂O in PGD₂ Synthase: Azine-CH₂OH?

- Isoquinoline-based hPGDS inhibitor: IC₅₀ = 2.34 nM
 - X-ray co-crystal structure isoquinoline interacting with a bound H₂O
- Attempted to displace bound H₂O by incorporating into inhibitor
 - naphthyl-CH₂OH: IC_{50} = 1480 nM; naphthyl-CH₂NH₂: IC_{50} = 845 nM
- X-ray co-crystal showed successful H₂O displacement but altered inhibitor geometry
 - naphthyl-CH_2OH dihedral Φ 21° & 27° vs preferred 90°
 - angle between naphthyl and phenyl = 117° rather than the low energy 97°
- Energy required for structural distortion offsets entropic advantage
- 2-ROCH₂-pyridines & pyridazines prefer a coplanar conformation
 can readily access orthogonal conformation: flexible motif
- Topology influenced by:
 - dipole-dipole & lone pair-lone pair interactions
 - reduced allylic 1,3-strain compared to phenyl

Pyridazine, Thiadiazole & Intramolecular Interactions

Pyridazines & Potency

Pyridazines & Potency

- but ... properties that can be effective in one context can be deleterious in another setting

M. Chen, P. Maienfisch, et al., J. Agric. Food. Chem., 2022, 70, 11109-11122; 2022, 70, 11123-11137

Pyridazines that Increase Potency

D

Cinnarizine & H₂O Displacement

Pyridazines Associated with Reduced Biological Activity

A.D. Hobson et al., J. Med. Chem., 2018, 61, 11074-11100; S. Kunikawa et al., Bioorg. Med. Chem., 2019, 27, 790-799; M.J. Kim et al., Bioorg. Med. Chem. Lett., 2010, 20, 3420-3425 J.B. Baell et al., J. Med. Chem., 2020, 63, 4655-4684; Nature, 2018, 560, 253-257

Pyridazines & Intermolecular H-Bonding in Drug-Target Interactions

Pyridazine & Intermolecular H-Bonds

Pyridazines & Isosterism in Glutaminase Inhibitors

J. Sivaraman *et al., Oncotarget*, 2016, **7**, 57943-57954; L.A. McDermott *et al., Bioorg. Med. Chem.*, 2016, **24**, 1819-1839 T. Tsukamoto *et al., J. Med. Chem.*, 2018, **62**, 46-59; R. Cerione *et al., J. Biol. Chem.*, 2018, **293**, 3535-3545

Heterocycles: H-Bonding & Selectivity

- Phthalazine-based p38α MAP kinase inhibitors
 - bind to ATP pocket, $IC_{50} = 0.8 \text{ nM}$
 - high selectivity over Kdr, Lck, cKit, JNK1-3
- X-ray co-crystal with p38α
 - H-bonds from protein to both pyridazine N atoms
 - NH of $\mathrm{Met}_{\mathrm{109}}$ and NH of $\mathrm{Gly}_{\mathrm{110}}$
- In p38 α , Gly₁₁₀ is flipped to project NH to inhibitor
 - hinge residue in cKit is substituted: Cys₆₇₃
 - higher energy required to flip conformation
 - accounts for high specificity

H-Bonding in PDE 10A & PI3Kδ Inhibitors

Pyridazines & Electrophilicity

FAAH Inhibitors – Core Heterocycle

Reactivity of Pyridazine-3-Nitriles

Bioisosteres of Pyridazines

Bioisosteres of Pyridazines

Pyridazine Bioisosterism in GABA_A

R.T. Lewis *et al., J. Med. Chem.*, 2006, **49**, 2600-2610; S.C. Goodacre *et al., J. Med. Chem.*, 2006, **49**, 35-38 L.J. Street et al., *J. Med. Chem.*, 2004, **47**, 3642-3657; M.S. Chambers *et al., J. Med. Chem.*, 2004, **47**, 5829-5832

Solving Liability Issues

Pyridazines & Solving Liabilities

C. Boldron et al., J. Med. Chem., 2014, 57, 7293-7316; C. Zhang et al., Chem. Res. Toxicol., 2020, 33, 1950-1959

Pyridazine: hERG, CYP 3A4 TDI & AO

- Ataxia telangiectasia & Rad-3 related protein (ATR)
 - regulates S & G2 checkpoints; sensitizes cancer cells to cytotoxics
- Azaindole introduced to take advantage of H-bond to Lys₂₃₂₇
 - improved potency; hERG & CYP 3A4 TDI, AO & P-gp substrate
- 2-Fluoro substituent reduced basicity
 - abrogated hERG, AO & P-gp but not TDI CYP 3A4
- Pyridazine addressed hERG, P-gp, AO and TDI CYP 3A4 inhibition
 - lower basicity believed to reduce hERG & P-gp recognition
 - exhibited moderate F in rats but low Cl
 - useful tool molecule

- Pan-inhibitors of hypoxia-inducible factor prolyl hydroxylase 1-3 (HIF PHD1-3)
 stimulate erythropoiesis
- Pyridazine superior potency to pyridine & pyrimidine
 early compounds had very long t_{1/2} in vivo
- Pyrazole potent but hERG inhibitor
 - pyridazine clean
- Supplanted by belzutifan

CN belzutifan

Pyridazines & Solubility Properties

$\begin{array}{c} \begin{array}{c} & & \\ $							
	Х	Y	Z	Bcl-2 FP IC ₅₀ (nM)	Bcl- _{XL} FP IC ₅₀ (nM)	RS4;11P EC ₅₀ (nM)	Sol. (µM)
phenyl	C-H	C-H	C-H	11	16	11	14
pyridazine	Ν	Ν	C-H	270	378	563	38
pyrimidine	Ν	C-H	Ν	18	39	177	3

- Bcl protein-protein interaction inhibitors large molecules
- Pyridazine 3x more soluble than phenyl potency reduced 20-50x
- Pyrimidine more potent 4x less soluble than phenyl

Y	Z	CK2α IC ₅₀ (nM)	IC ₅₀ (nM)	СС ₅₀ (µМ)	Sol. (µg/mL)
C-H	C-H	20	11	8.5	2.7
Ν	C-H	17	4.6	>30	14
C-H	Ν	14	10	>30	90
Ν	Ν	14	9.6	>30	1,025

CK2α inhibitors

• Pyridazine 400x more soluble than phenyl - pyridines 4-30x

Enzyme inhibitory potency maintained - cell potency poor

Pyridazine-3-CO.NHR Derivatives

Recent Pyridazine 3-CO.NHR Derivatives

Pyridazine-3-CO.NHR: Intramolecular H-Bonds & Potency

A.V. Komkov et al., Org. Lett., 2015, **17**, 3734-3737; R.G. Gentles et al., Bioorg. Med. Chem. Lett., 2011, **21**, 2212-2215; 2011, **21**, 3142-3147 Z. Zhang et al., J Med Chem., 2014, **57**, 5039-5056 (review); 2013, **56**, 568-583

Pyridazines: Intramolecular H-Bonds & Permeability

Pyridazin-3-ones

Pyridazin-3-ones – PARP, cAMP PDE3 Inhibitors

cAMP PDE3 Inhibitors & Cytotoxicity

- Recent studies to identify selective tumor cell cytotoxins
 - phenotypic screening approach using p53 WT & mutant cell lines
 - selected compounds active only toward p53 mutant cell lines
- Chemogenomic analysis of 766 cell lines with differential response
 - identified dependence on cAMP PDE3A
- Immunoprecipitation experiments with/without inhibitor
 - identified Schlafen12 as a partner
 - SLFN12 is an RNase: 1 of 6 with a range of functions in cells
- Hydrocarbon receptor-interacting protein (AIP) also required
 - required for PDE/SLFN12 complex assembly: may be a chaperone
- X-ray and cryo-EM structures of inhibitors bound to cAMP PDE3A
 - first structural data for PDE3A inhibitors
- Cocrystal structures of PDE3A/SFLN12/inhibitor
 - tetrameric complex with 2 inhibitors bound
- Some PDE3A inhibitors act as molecular glues
 - stabilize a complex between PDE3A & SLFN12
 - other PDE3A inhibitors can block the effect
- Prolongs half life of SLFN12 & activates its RNase activity
 - stimulates dephosphorylation of SLFN12
 - selectively degrades tRNALeu (TAA): spares tRNALeu (TAG)
 - story still developing: BAY 2666605 in clinic (Bayer-Broad)

The power of phenotypic screening

velcrins

Conclusion

Back-up Slides

Physicochemical Properties

	z-z	Z-Z	N:N
р <i>К</i> _а	2.0	3.17	2.5-2.7
р <i>К_{внх}</i>	1.65	1.97	
Dipole (D)	4.22	4.88	4.41
cLog P	-0.51	0.68	1.14
cLog D _{pH = 1}	-2.5	-1.51	-0.58
TPSA (Ų)	25.8	25.8	25.8
C _X ^{Ph}	0.417		

	×	HN N N	0 ∨ N N	S∕≂N ≶∕N
p <i>K</i> _a	5.2	2.45		
рК _{внх}	1.86	2.6	1.3	
Dipole (D)	2.22	5.74	3.04	3.28
cLog P	0.84	-0.89	-0.69	-0.2
$cLog D_{pH=1}$	-1.66	-2.85	-0.69	-0.22
TPSA (Ų)	12.9	36.75	33.95	54
C X Ph	0.41 (C2 & C4)			

	N N		
p <i>K</i> _a	0.93	-1.7	0.37
р <i>К_{внх}</i>	1.07	0.32	0.92
Dipole (D)	2.33	0	0
cLog P	0.26	-0.73	-0.002
$cLog D_{pH=1}$	-0.58	-1.82	-0.43
TPSA (Ų)	25.8	38.7	25.8
C _X ^{Ph}	0.43 (C2); 0.5 (C4)		0.47

Pyridazine is a strong H-bond acceptor

- approaching that of pyridine but much less basic

- not associated with CYP inhibition

- de-symmetrized by substitution

Pyridazine has the largest dipole amongst azines

- reflected in polarity (cLog P & cLog D)

- higher TPSA than pyridine

Pyridazine C-3 is electron deficient

- comparable to pyridine; lest than pyrimidine

- affects properties of substituents

♦ 3-C-H is a H-bond donor

- stronger than pyridine

aromaticity index (AI) = 79 compared to 100 for phenyl

O to S Interactions & Activity – Chk1 Kinase

Dual H-Bonding in Cathepsin Inhibitors

Ph	R	CI		N S	N	N	N-Z	pyrazole
	Cat L	6.6	6.3	6.7	5.5	5.9	<5.1	8.7
Ö	Cat L2	6.1	6.8	7.6	<5	7.2	<5	7.4
R	Cat S	6.9	7.7	8.6	6.2	8.1	6.1	6.7

pIC₅₀ values

Cathepsin inhibitors – lead has modest selectivity

- sought to improve selectivity by engaging $\ensuremath{\mathsf{Asp}_{71}}$
- Use scaffolds capable of engaging Met₇₀ & Asp₇₁ NHs
 - oxadiazole, thiadiazole
 - increased Cat L2 & S potency
- ♦ 3-Pyridazine highly potent vs Cat L2 and Cat S
 - pyridine, isomeric 4-pyridazine much poorer
 - attributed to H-bond interaction with pyridazine
 - much larger than the typical 15x (1.2 log)
- Pyrazole increases pIC_{50} by 0.8 over CI ($\Delta LE = 0.16$)
 - X-ray revealed H-bonds to Met_{70} & Asp_{71} NH
 - distances relatively long; better in Cat S?

F-Phenyl as Azine Bioisostere: GABA_A

X	Calc. dipole (<i>D</i>)	exp. p <i>K</i> _a	exp. Log D _{7.4}			
Ν	3.37 (R = CH ₃)	4.9 (R =H)	-0.2 (R =H)			
C-H	5.10 (R = CH ₃)	6.9 (R =H)	0.8 (R =H)			
C-F	4.52 (R = CH ₃)	4.9 (R =H)	0.9 (R =H)			

C-F has higher lipophilicity, lower dipole, reduced pK_a
 - improved CNS exposure

F-Phenyl as Azine Bioisostere: ATR Kinase

- Potent and selective ATR kinase inhibitor with high cell-based potency
 - proposed binding to ATR based on homology model from PI3Kδ
 - several in vitro and in vivo liabilities
- Truncating sulfone to a CH₃ improved some properties
 - still hERG, MDR, CYP 3A4 TDI and substrate of aldehyde oxidase
- 5-F eliminated P-gp, reduced hERG inhibition but not CYP 3A4 TDI
- Pyridazine solved problems
 - lower pK_a likely reduces hERG, CYP binding

Pyridazine & Sulfur Interactions - Conformation

Pyridazine & Sulfur Interactions - Conformation

- Potency varies dependent upon heterocycle identity
 - planarity between heterocycle & phthalazine core important
- Thiazole is most potent analogue
 - planar topography stabilized by phthalazine N to S interaction
 - absence of unfavorable interaction with peri-H atom
- Phenyl suffers from peri-H interaction
 - triazole stabilized by C-H to N interaction
 - absence of steric clash with peri-H; possible C-H to N
 - imidazole introduces unfavorable interaction with peri-H

Pedigrees of Heterocycles

Heterocycles are a mainstay of drug design

- 5- & 6-membered rings common scaffolds
- can address a range of problems

Silhouettes between homologues similar (except for S heterocycles) but electronic, physical, biological and developability properties can be very different

- 1,3,4-oxadiazoles vs 1,2,4-isomers
- pyridazines vs pyridines
- Key properties:
 - H-bond acceptor; H-bond donor: N-H, O-H, C-H
 - electron withdrawing properties, dipoles
- Properties readily modulated by substituents
 - affect H-bond donor, acceptor; electronics
 - identity, regiochemisty of heterocycle affects substituent properties
- Deployed to modulate potency, geometry, conformation, electronic activation of substituents
 - C=O; C=N

Heteroaromatic	Solubility	HSA binding	P450 inhib.	Combi	ned sc	ore
Pyridazine	3	3	3	3.0		
Pyrazine	2	3	3	2.7		
lmidazole	3	3	2	2.7		
Pyrazole	2	3	3	2.7		
1,3,4-Oxadiazole	3	2	2	2.3		
1,2,4-Triazole	3	1	2	2.0		
Furan	2	2	2	2.0	Ê	
Pyrimidine	2	2	2	2.0	5	
Oxazole	2	2	2	2.0		
Pyrrole	2	2	2	2.0		
Pyridine	2	3	1	2.0	ō	
1,2,4-Oxadiazole	2	1	3	2.0	1	
1,3,5-Triazine	1	2	2	1.7	>	
1,3,4-Thiadiazole	1	1	3	1.7	Ш	
Isoxazole	2	2	1	1.7	-	
Tetrazole	3	1	1	1.7		
1,2,3-Triazole	1	2	1	1.3		
Thiazole	1	1	2	1.3		
Thiophene	1	2	1	1.3		

Phenyl Mimics that can Improve Metabolic Stability

Heterocycle replacements for a phenyl ring with higher metabolic stability

- molecular matched pairs analysis
- 2323 pairs evaluated with 1,2-, 1,3- & 1,4-topologies examined
- piperazine the sole saturated ring examined in 1,4 relationship
- ◆ 1,2-topology: furan, thiophene performed poorly

1,3-topology: 5-membered heterocycles generally performed well
 - (3,5)-1H-1,2,4,-triazole and (2,4)-1H-imidazole the best

1,4-topology: 2,5-dipyrazine the best azine; pyridazine & piperazine good
 - (2,5)-1*H*-imidazole poor

1,2-	Mean ∆*
(4,5)-1H-triazole	0.97
(4,5)-1H-pyrazole	0.73
(4,5)-1H-imidazole	0.65
(4,5)-1,2,3-thiadiazole	0.64
2,3-furan	-0.07
2,3-1H-pyrrole	-0.01
2,3-thiophene	-0.12
(2,3)-pyrazine	0.35
(4,5)-pyrimidine	0.33
(2,3)-pyridine	0.20
(3,4)-pyridine	0.15
(3,4)-pyridine 1,4-	0.15 Mean Δ*
(3,4)-pyridine 1,4- (2,5)-1,3,4-thiadiazole	0.15 Mean Δ* 0.65
(3,4)-pyridine 1,4- (2,5)-1,3,4-thiadiazole (2,4)-1H-imidazole	0.15 Mean Δ* 0.65 0.64
(3,4)-pyridine 1,4- (2,5)-1,3,4-thiadiazole (2,4)-1H-imidazole (2,5)-1,3,4-oxadiazole	0.15 <u>Mean Δ*</u> 0.65 0.64 0.45
(3,4)-pyridine 1,4- (2,5)-1,3,4-thiadiazole (2,4)-1H-imidazole (2,5)-1,3,4-oxadiazole (2,5)-1H-imidazole	0.15 Mean Δ* 0.65 0.64 0.45 -0.33
(3,4)-pyridine 1,4- (2,5)-1,3,4-thiadiazole (2,4)-1H-imidazole (2,5)-1,3,4-oxadiazole (2,5)-1H-imidazole (2,5)-pyrazine	0.15 Mean Δ* 0.65 0.64 0.45 -0.33 0.46
(3,4)-pyridine 1,4- (2,5)-1,3,4-thiadiazole (2,4)-1H-imidazole (2,5)-1,3,4-oxadiazole (2,5)-1H-imidazole (2,5)-pyrazine (3,6)-pyridazine	0.15 Mean Δ* 0.65 0.64 0.45 -0.33 0.46 0.25
(3,4)-pyridine 1,4- (2,5)-1,3,4-thiadiazole (2,4)-1H-imidazole (2,5)-1,3,4-oxadiazole (2,5)-1H-imidazole (2,5)-pyrazine (3,6)-pyridazine (2,5)-pyrimidine	0.15 Mean Δ* 0.65 0.64 0.45 -0.33 0.46 0.25 0.19
(3,4)-pyridine 1,4- (2,5)-1,3,4-thiadiazole (2,4)-1H-imidazole (2,5)-1,3,4-oxadiazole (2,5)-1H-imidazole (2,5)-pyrazine (3,6)-pyridazine (2,5)-pyrimidine (2,5)-pyridine	0.15 Mean Δ* 0.65 0.64 0.45 -0.33 0.46 0.25 0.19 0.11

1,3-	Mean Δ*
(3,5)-1H-1,2,4-triazole	0.91
(2,4)-1H-imidazole	0.87
(2,4)-oxazole	0.80
(2,5)-1,3,4-oxadiazole	0.62
(2,5)-oxazole	0.59
(3,5)-isoxazole	0.47
(3,5)-1,2,4-oxadiazole	0.39
(2,5)-oxazole	0.12
(2,4)-thiazole	0.04
(2,6)-pyrimidine	0.43
(2,4)-pyridine	0.23
(2,6)-pyridine	0.17
(3,5)-pyridine	0.14
(2,6)-pyrimidine	0.10
(3,5)-pyrazine	-0.19

*Mean($\Delta(\log_{10} \text{Mean Cl}_{ints} \text{ for transform}))$

Pyridazine to Solve a hERG Problem in HIF PHD1-3

Pyridazines That Increase Potency

- LipE guided optimization
 - pyridazine 10x more potent than pyridine
 - reduced CYP inhibition
- Good PK, active in a bleomycin-induced model of pulmonary fibrosis

	Reserpine ptosis ED ₅₀	5-HT potentiation ED ₅₀	Turning behavior MED				
N-N	6	3.7	0.5				
N-N	4.5	6	0.1				
	>10	6	2				
	24	30	0.1				
	>100	>50	2				

- Pyridazine & thiadiazole most potent
 - Reserpine ptosis model, 5-HT potentiation
- Turning behavior model does not differentiate

Pyridazine in a FAAH Inhibitors: CYP Inhibition

Time-dependent, mechanism-based fatty acid amide hydrolase inhibitor

- urea reacts with serine hydroxyl to afford carbamoylated enzyme
- unique property of FAAH other hydrolases react with esters/thioesters

- $k_{\text{inact}}/K_{\text{i}} = 40,300 \text{ M}^{-1}\text{s}^{-1}$

- Pyridine inhibited CYPs
 - CYP 2D6 IC₅₀ = 1.4 μM
 - CYP 3A4: IC₅₀ = 0.8-4.3 μM
- Pyridazine 2-fold more potent FAAH inhibitor
 - 10-fold reduction in CYP 2D6 inhibition: $IC_{50} = 15.5 \ \mu M$
 - CYP 3A4: IC₅₀ = 30 μM

