Designing Around Problematic Functionalities in Drug Discovery

Nicholas A. Meanwell

Baruch S. Blumberg Institute School of Pharmacy, U. Michigan NuArq MedChem Consulting LLC

The Baruch S. Blumberg Institute Tuesday, July 25th, 2023

Outline

The problem:

- adverse drug reactions and manifestations of toxicity
- drug withdrawals, BBWs and rejections due to liver toxicity
- Drug-induced liver disease DILI
 - underlying mechanisms
- Metabolic activation of drugs and toxicity
 - background studies that attempt to provided perspective
 - assessing reactive metabolite formation and covalent binding to proteins
- A survey of the chemistry of structural alerts
 - problematic functionality
 - mechanistic organic chemistry underlying bioactivation
- Strategies and tactics to mitigate reactive metabolite problems
 - understanding the underlying mechanism can inform of drug design approaches
- Conclusion

Adverse Drug Reactions and Withdrawals The Role of Metabolic Activation

Adverse Drug Reactions (ADRs)

- ◆ ADRs were estimated to be the 4th leading cause of death in the US in 1994
 - deaths estimated at 106,900 (95% CI 76,000-137,000)
 - ADR death rates increased between 1999 and 2006
 - over 2 million serious ADRs per year: \$136 billion yearly cost
- ADRs have been divided into 5 categories
 - Type A accounts for 80%
 - Type B has an underlying chemical basis

	Туре	Description	Underlying Effect	Examples
80%	А	<u>A</u> ugmented Reactions	Dose-related extension of pharmacology	Excessive hypotension with antihypertensive agents; rhabdomyolysis with statins
	В	<u>B</u> izarre Reactions	Idiosyncratic – immune or non- immune mediated Rare: 1 in 10-50,000	Troglitazone and tienilic acid hepatotoxicity
	С	<u>C</u> hemical Reactions	Dose-related; molecular understanding	Acetaminophen, isoniazid hepatotoxicity
	D	<u>D</u> elayed Reactions	Occur after many years of drug ingestion	Teratogenicity after drug intake during pregnancy - thalidomide
	Е	<u>E</u> nd-of-Treatment Reactions	Adverse reactions on drug withdrawal	Withdrawal seizures after stopping phenytoin

Disease		Per annum	
Heart disease		743,460	
Cancer	529,904		
Stroke	150.108		
ADRs	ADRs		
Pulmonary Disea	Pulmonary Disease		
Accidents		90,523	
Pneumonia		75,719	
Diabetes	53,894		

ADR death rates increased between 1999 and 2006

B. K. Park et al, Chem. Res. Toxicol., 1998, **11**, 969-988; J. Lazarou et al., JAMA, 1998, **279**, 1200-1205; G. Shepherd et al., Ann. Pharmacother., 2012, **46**, 169-175 https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm110632.htm

Withdrawals of Prescription Drugs 1960-1999

- 121 Drugs withdrawn from world markets 1960-1999 for safety reasons
- NSAIDs most common category associated with drug withdrawal
- Many of the antidepressants withdrawn are MAO inhibitors
- Hepatotoxicity is the leading cause of drug withdrawal

"Hepatotoxicity is the most common adverse effect causing major drug problems including withdrawals and refusal to approve"

Dr Robert Temple (FDA): Drug-Induced Liver Injury: A National and Global Problem, Feb. 12-13th, 2001, *Westfields Conference Center*, Chantilly, VA

Drugs With Liver Toxicity Problems

Drug-Induced Liver Injury (DILI)

Most instances of DILI are idiosyncratic in nature

- no reliable biomarkers
- focus on reactive metabolites: retrospective studies
- Mitochondrial toxicity: an uncommon but distinctive form of liver toxicity
 - tetracycline, amiodarone, valproic acid
 - problem with HIV-1, HBV nucleoside analogues
 - inhibition of host DNA pol $\boldsymbol{\gamma}$

Cholestatic DILI: transporter involvement

- bile salt export pump (BSEP, ABCB11): cyclosporin, rifampicin
- multi-drug resistance-associated protein 2 (MRP2, ABCC2)
- multi-drug resistance protein 3 (MDR3)
 - these transporters are genetically polymorphic proteins

- Hapten hypothesis:
 - drug-protein adducts create antigens
 - precipitates an immune response
- Danger hypothesis
 - concomitant background liver injury
 - due to inflammation or infection
 - LPS administration to animals sensitizes to hepatotoxic drugs
- Human leukocyte antigens (HLAs or MHCs) & DILI
 - some drugs bind to an HLA: abacavir, carbamzepine
 - alter peptide presentation to the immune system
 - genetic polymorphisms in HLA proteins
 - adds to the complexity

Drug	Allele	Comment
Flucloxacillin	HLA-B*5701	80-fold increased risk of DILI
Abacavir	HLA-B*5701	fever, rash, headache, nausea & vomiting
Amoxicillin- clavulanate	HLA-DRB1*1501 also HLA-DQB1*06	cholestatic liver injury
Lumiracoxib	HLA-DRB*1501	accounts for 6-8% incidence of DILI; reactive metabolites
Ximelagatran	HLA-DRB1*07	DILI – interferes with peptide binding to HLA-DRB1*0701

Metabolic Activation and Drug Toxicity

See P.M. Gannet et al., Org. Biomol. Chem., 2018, 16, 2198-2209 for C-8 guanine modifications & role in cancer

Protein Covalent Binding and Toxicity

PCB = protein covalent binding

Dose and Incidence of Problems

		Dose (mg)	Withd	rawn	BBW	
◆ 53 of 68 withdrawn/black box label drugs associated with hepatic toxicity]	<10 mg	0%	6	0%	
- rest due to blood dyscracia, cutaneous ADRs, anaphylaxis	Withdrawn/black	10-50 mg	6%	6	8%	
 All ion classes included 	bux label drugs	50-100 mg	10	%	11%	
- 29 basic amines; 19 CO ₂ H; 20 neutral		>100 mg	84	%	81%	
Broad range of physicochemical properties						
- $\log P$: -0.67 to +6.35		164 drug set	% of [DILI-conce	ern drugs	3
 IPSA: 27 - 224 A² No correlation between physicochemical properties & idiosyncratic toxicity majority are high dose drugs: 100-2400 mg 		Log $P \rightarrow$ Dose ↓	<1 (n = 49)	1 to ≤ 3 (n = 47)	; >) (n =	-3 - 68)
 Analysis of 164 drugs with liver liability: dose >100 mg & Log P >3 predicts DILI (Rule-of-2) 	Drugs labeled for	<10 mg (n = 15)	60%	0%	20)%
 high % of false –ves (59%) Confirmed by ADRs reported in Sweden 1970-2004 		10 to <100 mg (n = 43)	60%	56%	41	%
- drug doses of <50 mg less likely to be associated with DILI		≥100 mg (n = 106)	65%	92%	96	5%
Drug doses of >100 mg & drug Log P >3 predicts DILI (Rule-of-2)		Daily Dose (n = 598)	≤10 r	ng 10-	49 mg	≥50 mg
Drug doses of <50 mg are less likely to be associated with DILI		% Causing DILI	9	1	4.2	77
	%	fatal or liver transplan	it 2		9.4	13.2
			Sweden 1	970-2004		

Tienilic Acid (Ticrynafen)

Metabolism of Tienilic Acid

- O incorporated, labeling reduced by GSH
- 5-Hydroxy (thiolactone) derivative from S-oxide (Nu = H_2O) or epoxide
 - ¹⁸O₂ labeling studies suggest epoxide intermediate 97% from ¹⁸O₂
 - no evidence of thiophene S-oxide detected in 2C9 supersomes
- Modeling studies suggest poor presentation of S to 2C9
 - C-4,C-5 bond exposed, readily oxidized
- Thiophene oxidation underlies the mode of action of clopidogrel
 - blood platelet ADP receptor antagonist
 - cyclic thioester oxide believed to be the reactive species

Metabolism of iso-Tienilic Acid

- Iso-tienilic acid inactivates CYP 2C9 but not selectively
 - labels other microsomal proteins
- 2C9 metabolizes by the S-oxide and epoxide pathways
- S-oxide reacts with thiols at C-2
 - sterically more hindered than C-5 but more reactive
 - intercepted by GSH or dimerizes via a Diels-Alder reaction
 - may be the source of hepatotoxicity
- C4-C5 epoxide also formed
 - rearranges to electrophilic thiolactones
- 2C9 modeling studies suggest access of 2C9 to both S and olefin
 - S=O may be formed by Fe-O-O-H species due to remoteness from Fe

Metabolic Bioactivation

In Vitro Techniques and Metabolic Pathways

Assessing Reactive Metabolites

- Incubate compound with human liver microsomes (HLM)
- Analyze for protein covalent binding (PCB)
 - use of radio-labeled drug optimal
- Evaluate in the presence and absence of glutathione (GSH) or derivative
 - GSH is a natural protective mechanism
- Protein binding measured as pmol eq./mg protein
 - 50 pmol eq./mg protein in vitro and in vivo suggested as a standard
 - differentiate between propensity to be toxic/non-toxic
- Analyze for PCB in presence and absence of GSH to assess potential for protection *in vivo*
- Analyze for (GSH) adducts
 - can be done with cold drug
 - GSH: soft nucleophile for soft electrophiles
- ♦ Trap with Na¹⁴CN
 - CN⁻ is a hard nucleophile
 - used to trap hard electrophiles like iminium ions

Oxidizing and Conjugating Enzymes

Drug Clearance Pathways in Humans

J.A. Williams et al., Drug Metab. Disp., 2004, 32, 1201-1208; S. Rendic & F.P. Guengerich, Chem. Res. Toxicol., 2015, 28, 38-42

The CYP 450 Catalytic Cycle

Structural Alerts

A Survey of Toxicophores and the Underlying Mechanistic Organic Chemistry

I. Shamovsky *et al., JACS,* 2011, **133**, 16168-16185; N.J. Gooderham *et al., Drug Metab. Disp.*, 2001, **29**, 529-534 O. Bezençon *et al., J. Med. Chem.*, 2017, **60**, 9769-9789; J.J. Crawford *et al., Chem. Res. Toxicol.*, 2020, **33**, 1950-1959

Hydrazines: B.K. Sinha *et al., J Drug Metab. Toxicol.*, 2014, **5**, 1000168; Benzylamines: A. Mutlib *et al., Chem. Res. Toxicol.*, 2002, **15**, 1190-1207 Nitrosamines: A.S. Kalgutkar *et al., J. Med. Chem.*, 2022, **65**, 15584-15607; S.S. Bharate, *J. Med. Chem.*, 2021, **64**, 2923-2936

Cyclopropylamines : R.P. Hanzlik et al., Arch. Biochem. Biophys., 2005, 436, 265–275

Amines: Some Special Cases with Concern

MPPP causes neurotoxicity
 haloperidol has similar metabolite

- Fluorinated amines
 elimination of HF after α-OH'ation
 Elucrosoctic acid release
- Fluoroacetic acid release
 - naturally occurring toxin
 - Krebs cycle: inhibits aconitase
 - lethal doses (mpk):
 - dog: 0.05; rat 0.1-5

- humans: 2-10

Cyclopropyl amines undergo ring opening

- tranylcypromine metabolized to cinnamaldehyde
- Trovafloxacin had BBWs for liver toxicity
 ultimately withdrawn due to hepatotoxicity

Strategies for Mitigating Reactive Metabolites

Strategies for Reducing Potential Problems

- Maximize potency, minimize dose
 - reduces reactive metabolite burden
- Structural modification
 - remove or modify problematic structural elements
- Introduce steric effects
 - steric shielding of metabolic sites to slow bioactivation
 - reactive metabolites will also likely be subject to steric hindrance
- Electronic effects
 - metabolic modification will be kinetically slower, reduced throughput
 - BUT..... metabolic activation produces highly reactive species
 - potential source of problems
- Introduce a metabolic soft spot
 - redirects metabolism away from problematic elements
- Intramolecular capture
 - proximal nucleophile can capture reactive intermediates

Reactive Metabolite Mitigating Strategies

Structural Modification of Problematic Elements

Quinonediimines in Bradykinin Antagonists

- Diamino pyridine moiety susceptible to oxidation in bradykinin antagonists
- Solution isostere of phenylene diamine moiety
 - reduce pyridine moiety to ethylene diamine; add C=O to mimic N
 - dimethyl provides conformational bias Thorpe-Ingold effect
- Cyclopropyl optimal: improved topology
 - electronic overlap with C=O confers additional conformational bias

Iminoquinones: FMS & IGFR

Felbamate Metabolism

Clinical utility of felbamate limited by aplastic anemia & hepatotoxicity

• Atropaldehyde is potently electrophilic and toxic to fibroblasts

- thiol adducts found in rat and human urine

F-Felbamate Mitigates Metabolic Activation

- F atom of fluorofelbamate prevents elimination of carbamate
 - atropaldehyde not formed

Avoiding Furan Metabolism

Reactive Metabolite Mitigating Strategies

Introduce Steric Effects

Melanocortin-4-Receptor Antagonist & Pim Kinase

introduce steric/reactivity constraints

with this pathway

Reducing Metabolic Activation of Thiazoles

Introduce steric constraints

- Two series of glucokinase activators based on 2-amino thiazoles
- PCB when incubated with rat and human LM: thiazole moiety responsible
 - major metabolite in RLM was the thiourea acid, Nu = OH
 - trapped by GSH: adduct with Nu = GS
 - implicated the thiolactone as the key reactive intermediate
- Substitution of the thiazole with CH₂OH at C-4 or CH₃ at C-5 reduced PCB 2-5-fold
- Second series:
 - sterically demanding *i*-Pr substituent at C-4 of thiazole optimal for potency
 - no metabolism to the thiourea following oral dosing to rats at 50 mpk

T. Lino et al., Bioorg. Med. Chem. Lett., 2010, 20, 1619-1622; F. Li et al., Bioorg. Med. Chem., 2010, 18, 3875-3884

Problems with a Fluorinated Pyrimidine

Enhancing Acyl Glucuronide Stability

Unsafe	Safe	Dividing Point		
t _{1/2} ≤1.7 h	t _{1/2} ≥7.2 h	t _{1/2} = 3.6 h		

Ph	R' O gluc			
R, R'	<i>k</i> (h ⁻¹)			
Н, Н	1.07			
CH ₃ , H (S)	0.367			
CH ₃ , H (<i>R</i>)	0.604			
CH ₃ , CH ₃	0.0302			
Et, Et	0.00008			
Introduce storically domanding				

Introduce sterically demanding proximal substituents

- Potent DGAT-1 antagonist
 - blocks triglyceride synthesis, storage
- Acyl glucuronide the 1° metabolite
- Added bulk to cyclohexane
 - increases stability of acyl glucuronide
 - $t_{1/2}$ for hydrolysis = 64 h in buffer
 - <15% rearrangement over 80 h

Reactive Metabolite Mitigating Strategies

Modulate Electronic Properties

Avoiding Quinone-Type Metabolites

- Short-acting Ca²⁺-sensing receptor antagonists
 potential therapy for osteoporosis
- Lead candidate underwent sequential NADPH-dependent oxidation
 - gave catechol & ortho-quinone in HLM based on GSH trapping
- Modifying the phenol ring to a pyridine reduced propensity for oxidation
 - calculations indicated higher oxidation potential
 - 2 F atoms also introduced to the distal phenyl ring
- ♦ 56-fold lower GSH adducts with modified molecule
- Challenge:
 - maintaining high clearance rate to minimize off-target activities

Modulate electronic properties

HIV-1 attachment inhibitors

- demethylation/oxidation to quinone
- 6-aza would metabolize to amide

Reactive Metabolite Mitigating Strategies

Introduce a Metabolic Soft Spot or Redirect Metabolism

Olefins in Benzodiazepine Receptor Ligands

Reactive Metabolite Mitigating Strategies

Combination Approaches

Avoiding Iminoquinone Metabolites in CRF₁

- Lead identified within a series of potent CRF₁ receptor inhibitors
 - 60% of dose identified as oxidized metabolites in bile
 - 25% of dose excreted as GSH adducts of phenyl ring
- Phenyl ring modification focused on pyridine analogue
 - a survey of pyridyl analogues indicated substantially reduced levels of bioactivation
 - incorporated into molecule selected for further development
- Pyrazinone ring also subject to bioactivation
 - epoxidation of the olefin
 - required further structural modification to electron deficient CN moiety
- ◆ Major metabolic pathway O-demethylation of alkyl ether introduced as a soft spot

Combination of approaches: steric effects, redirect metabolism

Conclusion

Conclusion

